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LE’lTER TO THE EDITOR 

Levinson’s theorem for non-local interactions? 

Tommy DreyfusS 
Ddpartement de Physique Thtorique, Universitt de Genkve, CH-1211 Genkve 4, 
Switzerland 
and 
Department of Mathematics, The Hebrew University, Givat Ram, Jerusalem, Israel 

Received 13 September 1976 

Abstract. Two definitions of the scattering phase shift are given. For non-local interactions 
giving rise to continuum bound states, the two definitions yield different phase shifts. 
Accordingly two different versions of Levinson’s theorem result; one of them takes the 
continuum bound states into account, the other one does not. The former is usually used by 
physicists, in spite of indications that the latter corresponds more closely to physical 
phenomena. 

1. Introduction 

The first attempt at a formulation of Levinson’s theorem for general scattering systems 
has been made by Jauch (1957) under the assumption that there are no continuum 
bound states (CBS). This assumption cannot usually be made for non-local interactions. 
Therefore Martin (1958) examined the phase shift due to a non-local, separable, central 
interaction in detail, and concluded that Levinson’s theorem had to be modified so as to 
take CBS into account. An analogous result for a larger class of non-local interactions 
has been proved by Bertero et a1 (1968). On the other hand Buslaev (1969) has proved 
that Levinson’s theorem holds in its original form for a class of interactions quite similar 
to that considered by Bertero eta1 (1968), and this in spite of the presence of CBS. In the 
present letter this apparent contradiction will be analysed and explained. In particular, 
it will be shown that both results are correct and that the discrepancy is due to a 
difference in the definition of the phase shift. It will be argued that Buslaev’s choice of 
phase shift is better motivated from the point of view of physics. 

For the special case of central s-wave scattering an analogous observation has 
already been made by Bolsterli (1969) and elaborated by Beregi et a1 (1973). It seems, 
however, worthwhile to discuss the matter again for the following reasons: scattering 
systems of a far more general nature will be considered; the perturbation is not required 
to be spherically symmetric and the unperturbed Hamiltonian is almost arbitrary. In 
addition to that it appears that most physicists are unaware of Buslaev’s and Bolsterli’s 
work; thus they continue to use the ‘less physical’ choice for phase shift (Englefield and 
Shoukry 1974, Glockle and Le Tourneux 1976) or else rediscover the ‘more physical’ 
choice (Kermode 1976). 
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2. Two Levinson-type theorems 

The scattering system to be considered is given by an unperturbed Hamiltonian Hand  a 
perturbation Q. H can be the one-particle kinetic energy Ho = P2/2m but much 
more general H are admissible. We only require that the spectrum of H equals the 
positive semi-axis [0,03). (Note that even this requirement is imposed only for 
simplicity of exposition; any shape of the spectrum can be treated; for details see 
Dreyfus 1976.) In particular we admit H = Ho+ V, with V a local potential. If H has 
bound states, we denote their span by 9 and its orthocomplement by BL. The 
perturbation Q is assumed to be of the form 

Q = gl'+ = gI+)(+I, g < o ,  +€gal, 11+11= 1; 

that is, Q is a non-local, separable interaction; P+ is the projection on the (one- 
dimensional) subspace spanned by + ; + need not be spherically symmetric. The case 
g > 0 can be treated as well but is less interesting because it cannot give rise to proper 
(negative energy) bound states. 

Kat0 (1957) has shown that, for the scattering system given by H and 0, the 
scattering operator S exists and is unitary on 9' (we assume here assumption A; see the 
appendix); moreover S is diagonal in the energy, (AlSIA') = 6(A - A')S(A),  but not 
necessarily in the angular momentum. Instead of the fixed angular momentum phase 
shifts, one therefore considers their sum: 

c (21+ 1 ) U A )  

1 1 1 1 
2i 2i 2i 2i =-E (21 + 1) In ezi8'(A)= -1 Tr In Sl(A) = -Tr In S(A) =--In det S(A). 

The determinant of the scattering matrix, det S(A), is the object we will be concerned 
with mainly. Before stating its Properties, we impose some not very restrictive but 
rather technical supplementary conditions on H and 4. In order not to interrupt the 
line of the argument, we refer these conditions, together with indications about the 
proofs, to the appendix. 

If H and 4 satisfy assumptions A and B of the appendix then det S(A) has the 
following properties: there exists a function f ( z ) ,  holomorphic and non-zero in the open 
upper half-plane, with boundary value f ( A )  = limslo f (A +is)  and zero-set 8 = 
{F E R[f (p)  = 0) such that: 

for all A & 8. f (A )* 
f ( A )  

det S(A) = - (a )  

(b) 8 coincides with the set of those eigenvalues of H +  Q which are not eigenvalues 
of H. This set is finite. It consists of N ,  proper bound state energies below zero 
(0 Q N ,  d 1) and N ,  CBS energies above zero (0 d N ,  < 03). 

( c )  f ( A )  is continuous. Moreover, for all p E 8 

lim det S(A) = lim det S(A) = 1. 
A I r  A tr 

Consequently, there are two obvious ways to define the logarithm of det S(A) and thus 
the phase shift. The first makes use of the continuity property (2) of det S(A) and defines 
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the phase shift &(A) as the continuous logarithm of det S(A): 

61(00) = 0. 1 
21 

S,(A) =7 In det S(A), 

(Sl(m) = 0 is the usual normalization condition; it is of no further importance here.) The 
second way makes use of the existence of analytic extensions and defines the phase shift 
S2(A) as a boundary value: 

a2(A) = lim -argf(A +is), &(CO) = 0. 
SlO 

&(A) is continuous. It satisfies the modified version of Levinson’s theorem proved by 
Martin (1958) and Bertero et af (1968), i.e. 

&(O) = T(N< +N,). (3) 

&(A) is not continuous. More precisely, at ,U E % it has a jump given by 

lim &.(A) - lim S2(A) = T; (4) 
A b  * f P  

elsewhere it is continuous. It satisfies Levinson’s theorem in its original form as proved 
by Buslaev (1969), i.e. 

&(O) = TN<. (5) 
We conclude that there is no contradiction between the results of Martin and Bertero et 
a1 and those of Buslaev. On the contrary, taking (4) into account, it is easy to see that (3) 
and (5) follow from each other and are therefore equivalent. 

3. Conduding remarks 

Although the phase shift or the determinant of the scattering matrix is not a directly 
observable quantity, one expects it to reflect the phenomena occurring in the scattering 
process. These phenomena do, at least within the positive energy range, supposedly 
depend continuously on the coupling constant. One may thus expect the phase shift to 
depend continuously on the coupling constant. In the case at hand continuous 
dependence on the coupling constant can be achieved only by admitting discontinuous 
dependence on the energy at CBS energies, as in (4). Isolated discontinuities in the 
energy seem, however, not to be a serious drawback since in practice one always deals 
with wave packets comprising an entire energy range. In fact such discontinuities are in 
perfect agreement with phenomenology; they correspond to infinitely sharp resonances 
and, just like the CBS they are associated with, go over into ordinary sharp resonances 
under slight changes of the coupling constant. In this sense the phase shift S2(A) can be 
said to be ‘more physical’ than &(A). Numerical examples as well as sketches 
illustrating this discussion can be found in the papers by Beregi et a1 (1973) and 
Kermode (1976). 

Finally we would like to mention that the present formulation of Levinson’s 
theorem in an abstract framework has led to an analogous theorem of a far more general 
nature (Dreyfus 1976); this theorem in turn can be applied to provide Levinson-type 
theorems for scattering by local but non-central potentials (Dreyfus 1975) and for 
scattering by impurities in crystals (Dreyfus, in preparation). 



L190 letter to the Editor 

Acknowledgments 

I would like to thank Peter A Rejto and Lawrence E Thomas for helpful discussions. 

Appendix 

Here we collect some technical assumptions about the scattering system and indicate 
how the statements in 0 2 are proved. For complete proofs the reader is referred to 
either §§ 4 and 5 of Dreyfus (1976) or 00 E3 and E4 of Dreyfus (1975). 

Assumption A. H has no singular continuous spectrum. (No physical Hamiltonian is 
known to have singular continuous spectrum.) 

Assumption B. For f(z) = 1 +g(4I(H-z)-'l+) 

limaio f(A +is)  exists for all A and is continuous in A ; 
f (A)  is differentiable at all A E $; 
I f @ ) -  11 < c ( l  +A)-' for some c > 0 and 8 >;and for all A >O. 

(BO 
(B2) 
033) 

Assumption B imposes some smoothness and some decrease properties on the momen- 
tum space representative of 4. The set of 4 satisfying these properties is very large; in 
particular it is dense in 93'. 

Outline ofproofs. Formula (1) follows from the representation for S given by Kuroda 
(1963). The f of formula (1) is identical with the f of assumption B; it is the Fredholm 
determinant of the scattering system. This implies that 8 coincides with the set of those 
eigenvalues of H +  Q, which are not eigenvalues of H. Assumption B is essential for 8 
to be finite. Details may be found in a paper by Faddeev (1967). Formula (2) follows 
from the Bernoulli-L'Hbpital rule, applied to (1). 

We give no separate proof of (3) because it is easier to prove (4) and (5 ) ,  from which 
(3) follows. The proof of (4) and ( 5 )  is based on the technical result that at every zero off 
the derivative off is strictly negative. (Note that f is a complex-valued function !) Using 
this, together with Im f a  0 for all z and Im f ( A )  = 0 for A c 0, it is not difficult to see that 
arg f ( A )  does not vary as A runs from - o;, to the smallest zero off, but that it decreases 
by T as A runs from any zero off to the next or from the largest zero off to + 00. (Note 
that f (A)  -f 1 as A + f 00.) Similarly arg f ( A )  increases by T as A passes through any zero 
off. Thus (4) holds. ( 5 )  results by summing up the above variations. 
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